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Abstract

The LIBOR market model features the ease for calibration procedure, and the re-
sulting pricing formula is more tractable. This paper derives an approximate pricing
formula of digital options within the multifactor LIBOR market model framework
when the dynamics of the LIBOR rate with different maturity dates are effected
by the distinct rare events. The digital options include delay digital options, de-
lay interest-or-nothing digital option and delay interest-or-nothing range digital
option.

1 Introduction

The LIBORmarket model (LMM) is developed by Brace, Gatarek and Musiela
(1997, BGM), Miltersen, Sandmann and Sondermann (1997), and Musiela and
Rutkowski (1997) and has become an important model for interest rate mar-
kets. This is because that the dynamics of interest rate index do not deduced
from the unobservable factors, as is HJM term structure model. Rogers (1996)
examined that the rate can attain negative values with positive probability
which may cause some pricing error in many cases for the Gaussian HJM term
structure model. However, the underlying LIBOR rates are positive. The LMM
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is widely used by practitioners due to the advantage that the cap pricing for-
mula in the LMM framework is the Black’s formula which is consistent with
market practice and makes the calibration procedure easier. Recently, several
new results are proposed for pricing derivatives in the lognormal LMM, such
as floating range notes (Wu and Chen, 2008).

However, the lognormal LMM cannot be calibrated adequately to the observed
market data. A considerable of extensions for the LMM is proposed by using
jump diffusion, Levy processes, or incorporating stochastic volatility effects.
The importance of jumps has been widely documented in equity markets and
in interest rate markets. Jumps provide a flexibility to matching derivative
prices. Therefore, adding jumps to the lognormal LMM provides a more ade-
quate model to calibrate the observed market data. In the line of HJM market
model, Bjork et al. (1997) proposed a very general model in which the for-
ward rate is driven by a finite number of Wiener processes plus a jump random
measure. Glasserman and Kou (2003) extended the lognormal LMM to include
jumps in interest rates governed market point processes. The extension from
Glasserman and Kou (2003) allows for finding a no-arbitrage condition and
a risk-neutral probability measure as well. Glasserman and Merener (2003)
developed computational procedures for the numerical solution of LMM with
jumps. Recently, several researches are concentrated on finding a formula for
pricing exotic derivatives in the Levy-driven LMM.

The presented research ha two objectives. First, we derive a formula for pricing
the European-style derivatives in the LMM with jumps when the dynamics
of the LIBOR rate with different maturity dates are effected by the distinct
rare events. And then, we use the formula to pricing digital options in the
LMM with jumps. The digital options include delay digital options, delay
interest-or-nothing digital option and delay interest-or-nothing range digital
option. In the line of Raible (2000), a Fourier transform method is provided for
Delay Digital Options to compute the value of our formula. In future studies,
we derive an approximate pricing formula of floating range notes within the
multifactor LMM framework with jumps.

This paper proceeds as follows. The approximate LMM with jumps are in-
troduced in Section 2. The pricing formula for a European-style option is
obtained in this LMM. Section 3 applies the formula to pricing digital op-
tions. To compute the formula numerically, we provide a Fourier transform
method for digital options in Section 4.
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2 The approximate LIBOR market model

On the basis of the results of HJM (1992) and Glasserman and Kou (2003),
they modelled the jump diffusion model interest rate behavior in term of the
forward LIBOR rates. Let (Ω,F , {Ft, t ≥ 0}, P ) be a filter probability space
in which is defined on a m-dimensional Brownian motion w and r random
measures of jump of semimartingale with process µl. Let T ∈ [0, T ∗], T ∗ ≤ ∞
denote the time horizon. The LIBOR rate is formulated in a discrete-tensor
setting in which the maturity T is restricted to a finite set of dates 0 =
T0 < T1 < · · · < TM < TM+1 < T ∗ and the intervals Ti+1 − Ti are equally
spaced with a common spacing of δ. We assume that µl, l = 1, 2, ..., r and
wt are independent to each other and that the processes jump µl have the
compensator νl(t, dx) = λlFl(dx)dt, l = 1, 2, ..., r, where the expected number
of jumps is λl and the jump size is distributed according to Fl. With each
forward rate we associate jump size function δl(x, Tn), l = 1, 2, ..., r and define

J(t) =
r
∑

l=1

∫

R

δl(x, Tn)µl(dx, t),

where δl : R× [0, T ∗] → R is B(R)⊗ B([0, T ∗])-measurable.

Suppose that a bond price is specified through forward rate, ie. for Tn ∈ R
+
.

P(t, Tn) = exp

{

−
∫ Tn

t
f(t, s)ds

}

, t ≤ Tn,

where the forward rates dynamics f(t, Tn) are given by

df(t, Tn) = α(Tn)dt+ σT (Tn) · dwt +
r
∑

l=1

∫

R

δl(x, Tn)µl(dt, dx). (1)

The coefficients α : [0, T ∗] → R and σ : [0, T ∗] → R are B([0, T ∗])-measurable.
The coefficients satisfy the following conditions. For all finite t and t ≤ Tn,
n = 1, 2, . . . ,M + 1,

∫ Tn
t |α(s)| ds <∞,
∫ Tn
t |σi(s)|2 ds <∞, i = 1, 2, . . . , m

and
∫

R

∫ Tn

t
|δl(x, s)|2 νi(ds, dx) <∞, l = 1, 2, ..., r

It is convenient to extend the definitions of the coefficients by putting them
equal to zero for t > T .

Put A(t, T ) = − ∫ Tt α(s)ds, σ∗
i (t, T ) = − ∫ Tt σi(s)ds, i = 1, 2, ..., m and σ∗(t, T ) =
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(σ∗
1(T ), ..., σ

∗
m(T )) and

Dl(t, x, T ) = −
∫ T

t
δl(x, s)ds, l = 1, 2, ..., r

According to Glasserman and Kou (2003), the LIBOR rate dynamics under
the martingale measure is follows:

dL(t,Tn)
L(t,Tn)

=











γn(t)ϕ0(t) + γn(t)
∑n
k=⌈t⌉

δγkL(t,Tk)
1+δL(t,Tk)

−
r
∑

l=1

∫

R

Hnl(x)
n
∏

k=⌈t⌉

1 + δL(t, Tk)

1 + δL(t, Tk)(1 +Hkl(x))
ϕl(t, x)νl(t, dx)











dt

+γndwt +
r
∑

l=1

∫

R

Hnl(x)µl(dt, dx),

where γn(·) is a bounded, adapted, Rm-valued process and Hnl, l = 1, ..., r is
deterministic functions fromR toR for n = 1, 2, ...,M . For all n = 1, 2, . . . ,M ,γn
and Hnl satisfy the following relation:

σ∗(t, Tn+1)− σ∗(t, Tn) =
δγn(t)L(t, Tn)

1 + δL(t, Tn)

and
∫ Tn+1

Tn
δi(t, x, s)ds = log

(

1 + δLn(t
−, Tn)(1 +Hnl(x))

1 + δL(t−, Tn)

)

.

Here, ⌈t⌉ denotes the smallest integer that is greater than t so that ⌈t⌉ is the
index of the next maturity as of time t.

Under forward measure PM+1 for each n = 1, 2, ...,M , Glasserman and Kou
(2003) presented that

dL(t, Tn)

L(t, Tn)
=









γn(t)ϕ0(t)− γn(t)
∑M
k=n+1

δγkL(t,Tk)
1+δL(t,Tk)

−
r
∑

l=1

∫

R
Hnl(x)

M
∏

k=n+1

1+δL(t,Tk)(1+Hkl(x))
1+δL(t,Tk)

νM+1
l (t, dx)









dt

+γn(t)dW
M+1
t +

r
∑

l=1

∫

R

Hnl(x)µl(dt, dx),

where νM+1
l = ψl(t, x)νl(t, dx). There exist infinite suitable ϕ0(t) and ϕl(t, x),

l = 1, 2, . . . , r such that the forward rate is arbitrage-free. Glasserman and
Kou (2003) worked directly under the risk-neutral measure (Brace et al., 1997;
Jamshidian, 1997; Miltersen et al., 1997) and so implicitly have ϕl ≡ 1; that
is νM+1

l = νl(t, dx) = λlFl(dx).

In this paper, we assume that dynamics of the LIBOR rate with different
maturity dates are effected by the distinct rare events; To model this situation,
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the jump size functions are selected as

Hnn = ex − 1, Hnl ≡ 0, n 6= l.

Then the dynamics of LIBOR rates changes to

dL(t, Tn)

L(t, Tn)
=















γn(t)ϕ0(t)− γn(t)
M
∑

k=n+1

δγkL(t, Tk)

1 + δL(t, Tk)

−
∫

R

(ex − 1)(x)
M
∏

k=n+1

1 + δL(t,Tk)e
x

1 + δL(t,Tk)
λnFn(dx)















dt

+γn(t)dW
M+1
t +

∫

R

(ex − 1)µn(dt, dx).

When the market price of risk ϕl(x, t), l = 1, 2, . . . , r associated with compo-
nent of the jump processes are given, the market price of risk ϕ0(t) associated
with the corresponding component of the Brownian motion can be obtained
by solving the following equation system:

For any given T1, T2, . . . , TM ∈ [0, T ∗] with T1 < T2 < · · · < TM , assume that
there exist maturity invariant solutions

ϕ0(·, T1, T2, . . . , TM) = ϕ0i(·) : Ω× [0, Ti] → R , i = 1, 2, . . . , m

to the equations of market price of risk:





















m(t, T1)

m(t, T2)
...

m(t, TM )





















+H





















ϕ01(t)

ϕ02(t)
...

ϕ0m(t)





















= 0, (2)

where

H =















σ∗
1(t, T1) · · · σ∗

m(t, T1)
...

. . .
...

σ∗
1(t, TM) · · · σ∗

m(t, TM)















,

and

m(t, Tn) = A(t, Tn) +
1

2
‖σ∗(t, Tn)‖2 +

∫

R

(eDl(t,x,Tn) − 1)ϕn(t, x)νn(t, dx),

for all n = 1, 2, . . . ,M .

Let

α(t, Tn, TM) = γn(t)ϕ0(t)− γn(t)
M
∑

k=n+1

δγkL(t, Tk)

1 + δL(t, Tk)
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for n = 1, 2, . . . ,M and l = 1, 2, . . .M . The calendar time of the process
L(t, Tn) is frozen as its initial time τ and thus the parameters’ process be-
come deterministic. Under the initial time τ , α(t, Tn, TM) and νM+1

n can be
approximated by ᾱ(t, Tn, TM) and ν̄M+1

n , which are defined by

ᾱ(t, Tn, TM) = γn(t)ϕ0(t)−
M
∑

k=n+1

δγkL(τ, Tk)

1 + δL(τ, Tk)
.

and

ν̄M+1
n (dx) =

M
∏

k=n+1

1 + δL(τ, Tk)e
x

1 + δL(τ, Tk)
Fn(dx),

respectively.

Proposition 2.1 Under the forward measure PM+1, the dynamics of LIBOR
rates are represented as

dL(t, Tn)

L(t, Tn)
= ᾱ(t, Tn, TM)dt+γn(t)dw

M+1
t +

∫

R

(ex−1)(µn(dt, dx)−λnν̄M+1
n (dx)dt)

(3)

The solution for (3) is obtained as

L(t, Tn) = L(τ, Tn) ˙exp(Y (t, Tn)),

where

dY (t, Tn) = ᾱY (t, Tn, TM)dt+ γYn (t)dw
M+1
t +

∫

R

xµYn (dt, dx).

The parameters of Y (t, Tn) satisfy the following relations

γYn = γn, νYn (dx) = νn(dx), λYn = λn,

and

ᾱY (t, Tn, TM) =
∫ t

τ
α(s, Tn, TM)ds−

∫ t

τ

1

2
||γn(s)||2ds−

∫

R

(ex− 1)λnν̄
M+1
nn (dx).

Since ν̄M+1
n (dx) is a time-t independent measure, we assume that ν̄M+1

n (dx) =
fQn (x)dx, where the probability density function fQn (x) of the jump size satis-
fies a normal distribution with mean η and variance ξ2, ie.

fQn (x) =
1√
2πξn

exp(
(x− ηn)

2

2ξ2
).

The probability density of log return Y (t, Tn) = log L(t,Tn)
L(τ,Tn)

is obtained as a
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quickly converging series of the following form:

P(Y (t, Tn) ∈ A) =
∞
∑

a=0

P(Nt = a)P(Y (t, Tn) ∈ A|Nt = a).

Precisely, it can be represented as the form

P(Y (t, Tn)) =
∞
∑

a=0

e−λnt(λnt)
a

a!
N(Y (t, Tn)|Nn

i = a),

where kn = eηn+ξ
2
n/2 − 1 and N(Y (t, Tn)) is a normal density with mean

∫ t
0 α

Y (s, Tn, TM)ds− 1
2

∫ t
0 ‖γYn (s)‖2ds−λnkn+ iηn and variance

∫ t
0 ‖γn(s)‖2ds+

iξ2n.

Theorem 2.2 Under the forward measure PM+1 the characteristic function
of Yn is obtained as follows

EPM+1

[eizY (t,Tn)] = eψ(z,t) ≡ χ(z),

where

ψ(z, t) = iz
(

∫ t
0 α

Y (s, Tn, TM)ds− 1
2

∫ t
0 ‖γn(s)‖2ds− λkn

)

−z2

2

∫ t
0 ‖γn(s)‖2ds+ λnkn(z)

and kn(z) =
(

eiηnz−
ξ2nz2

2 − 1
)

.

Proof. Since wM+1
t and µYnl are independent for all l, the distribution of

log Y (t, Tn) can be regarded as a time dependent normal distribution added
with a time independent jump measure. We have

EPM+1
[eizY (t,Tn)] = EPM+1

[eiz
∫ t

0
ᾱY (s,Tn,TM )ds]EPM+1

[eiz
∫ t

0
γYn (s)dwM+1

s ]

·Πr
i=1E

PM+1

[eiz
∫ t

0

∫

R
xµi(ds,dx)]

= eψ(z,t).

❑

In the following theorem, we obtain a European option pricing formula under
the normal jump size assumption.

Theorem 2.3 Let L(t, Tn), n = 1, 2, . . . ,M be the dynamics of the LIBOR
rate with

dL(t, Tn)

L(t, Tn)
= ᾱ(t, Tn, TM)dt+γn(t)dw

M+1
t +

∫

R

(ex−1)(µn(dt, dx)−λnν̄M+1
n (dx)dt),
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where the jump process µn has the compensator νn(dx) = λnfn(x)dx, When
fn(x) is a probability density of normal distribution with mean ηn and variance
ξ2n, for all n = 1, 2, . . . ,M , the European option price V (τ, L(t, Tn)) with payoff
F (L(Tn, Tn)) under the PM+1-measure is obtained as

V (τ, L(τ, Tn))

=
∑∞
i=0 P(N

n
t = i)V BS(Li(τ, Tn),

∫ Tn
τ α(s)ds, σ2

i (τ, Tn)),

where V BS(Li(τ, Tn),
∫ Tn
τ α(s)ds, σ2

i (τ, Tn)) is a pricing formula of the Euro-
pean option uder the Black-Schole likely assumption; that is the forward LI-
BOR under the Black-Schole likely assumption is given as

dL(t, Tn) = L(t, Tn)(α(t)dt+ σni(t)dzt)

with initial value Li(τ, Tn).

Proof. A European option price V (τ, L(t, Tn)) with payoff F (L(Tn, Tn)) un-
der the PM+1-measure is calculated as

V (τ, L(τ, Tn))

= EPM+1
[

F
(

L(τ, Tn)e
Y (Tn,Tn)

)]

= EPM+1
[

F
(

L(τ, Tn) exp
(

∫ Tn
τ ᾱY (t, Tn, TM)ds+

∫ Tn
τ γYn (s)dw

n+1
s +

∫

R
xµYn (dt, dx)

))]

=
∑∞
a=0 P(N

n
t = a)EPM+1

[

F
(

L(τ, Tn) exp
(

c(τ, Tn) +
∫ Tn
τ γYn (s)dw

n+1
s +

∑a
k=1 Yk

))]

,

where

c(τ, Tn) =
∫ Tn

τ
α(s, Tn, TM)ds− 1

2

∫ Tn

τ
‖γn(s)‖2ds− λnkn.

Since

c(τ, Tn)+
∫ Tn

τ
γYn (s)dw

n+1
s +

i
∑

k=1

Yk ∼ N(c(τ, Tn)+ iηn),
∫ Tn

τ
‖γn(s)‖2ds+ iη2n),

(4)
the random variable

c(τ, Tn) + iηn +

√

√

√

√

∫ Tn
τ ‖γn(s)‖2ds+ iη2n

Tn − τ
zTn−τ (5)

is equal to (4), where zt is a one-dimensional Brownian motion.

Set

σ2
i (τ, Tn) =

∫ Tn
τ ‖γn(s)‖2ds+ iη2n

Tn − τ
(6)
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and rewrite (5) as the form

∫ Tn

τ
α(s)ds− 1

2
σ2
ni(t)(Tn−τ)+ iξ2n(Tn−τ)+(λnkn)(Tn− t)+ iηn+σni(τ)zTn−τ .

This implies that

V (τ, L(τ, Tn))

=
∑∞
i=0 P(N

n
t = i)Ez

[

F

(

L(τ, Tn)e
iξ2n(Tn−τ)+(λnkn)(Tn−t)+iηn ė

∫ Tn

τ
α(s)ds− 1

2
σ2
ni
(t)(Tn−τ)+σni(τ)zTn−τ

)]

.

Setting

Li(τ, Tn) = L(τ, Tn)e
iξ2n(Tn−τ)+(λnkn)(Tn−t)+iηn ,

we get

V (τ, L(τ, Tn))

=
∑∞
i=0 P(N

n
t = i)Ez

[

F

(

Li(τ, Tn)ė
∫ Tn

τ
α(s)ds− 1

2
σ2
i
(τ,Tn)(Tn−τ)+σni(τ)zTn−τ

)]

=
∑∞
i=0 P(N

n
t = i)V BS(Li(τ, Tn),

∫ Tn
τ α(s)ds, σ2

i (τ, Tn)).

❑

3 Delay digital option pricing formula

3.1 Delay Digital Options

An interest rate delayed digital call (put) option (DC (DP)) pays one currency
unit at maturity Ti+1 if the reference interest rate L(Tij , Tij) that matured
previously at time Tij with the compounding period [Tij , T

∗
ij] lies above (below)

the strike rateKij . The final payoff of this option at time Ti+1 is precisely given
as follows: 1

DO(Ti+1, Ti+1;Tij;Kij) = 1{θL(Tij ,Tij)>θKij}.

where L(Tij , Tij) is a matured LIBOR rate for the period [Tij, T
∗
ij ], θ set to 1

stands for a digital call and -1 for a digital put.

1 1{·} is an indicator function, defined as follows:

1{A}(ω) =







1 if ω ∈ A,

0 otherwise.
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Theorem 3.1 The value of the DO at time τ is given as follows

DO(τ, Ti+1;Tij ;Kij) = P (τ, Ti+1)
∞
∑

a=0

e−λi+1(Ti+1−τ)(λi+1(Ti+1 − τ))

a!
N(θd(Tij); a)

with

d(Tij; a) =
log

(

La(τ,Tij)

Kij

)

+ ρ(τ, Tij ;Ti+1)− 1
2
σa(τ, Tij)

√

σa(τ, Tij)
,

where

ρ(τ, Tij ;Ti+1) =
∫ Tij

τ
α(s, Tij;Ti+!)ds

and σa(t, T ) is defined in (6).

3.2 Delay Digital Range Option

A delayed range digital option (DRO) is similar to an DO except that the
payment occurs as the reference rate lies inside a pre-specified range [KL

ij , K
U
ij ].

The final payoff of a general DRO at time Ti+1 is defined as follows:

DRO(Ti+1, Ti+1;Tij ;Kij) = 1{KL
ij
≤L(Tij ,Tij)≤KU

ij
}. (7)

Based on the property in probability measure theory, the DRO payoff can be
expressed in terms of two DC payoffs. It means that (15) can be rewritten as
follows:

DRO(Ti+1, Ti+1;Tij;Kij) = DC(Ti+1, Ti+1;Tij;K
L
ij)−DC(Ti+1, Ti+1;Tij ;K

U
ij ).

Theorem 3.2 The time τ value of the DRO is equal to

DRO(τ, Ti+1;Tij;Kij) = DC(τ, Ti+1;Tij ;K
L
ij)−DC(τ, Ti+1;Tij;K

U
ij ). (8)

Remark 3.3 For an DO, if the maturity date Tij of its reference rate equals
Ti+1 which is also the maturity date of the DO, then the DO becomes an
ordinary digital option without delaying its payoff. Similarly, as Tij = Ti+1,
an DRO also becomes an ordinary digital range option.

3.3 Delay Interest-or-Nothing Digital Option

A delayed interest-or-nothing digital call (put) option (DIC (DIP)) pays a
floating interest payment L(Ti, Ti) at maturity date Ti+1 if the reference in-
terest rate L(Tij , Tij) is above (below) a pre-specified strike rate Kij. We state
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the contract formally by specifying its final payoff at time Ti+1 as follows:

DIO(Ti+1, Ti+1;Tij ;Kij) = L(Ti, Ti)1{θL(Tij ,Tij)>θKij},

θ = 1 stands for a digital call option, and -1 for a digital put option.

Theorem 3.4 Let

dRTi+1

dQTi+1
= eγidw

Ti+1
t +

∑r

l=1

∫

R
xµl(dt,dx)−

1
2
||γi||2−

∫

R
(ex−1−x)λijν

Ti
ij

(dx)dt.

The time τ vale of the DIO is given as follows:

DIO(τ, Ti+1;Tij;Kij) = P (τ, Ti+1)L(τ, Ti)e
ᾱiERTi+1

[1θL(Tij ,Tij)>θKij
],

where
β̄i = α(t, Tij, Ti+1)−

∫

R

xλijν
Ti
ij (dx).

Proof. The DIO under the forward measure QTi+1 is priced as follows:

DIO(τ, Ti+1;Tij;Kij) = P (t, Ti+1)E
QTi+1

(L(Ti, Ti)1θL(Tij ,Tij)>θKij
).

DIO(τ, Ti+1;Tij ;Kij) can be written as follows

P (τ, Ti+1)L(τ, Ti)e
β̄iEQTi+1

[
dRTi+1

dQTi+1
1θL(Tij ,Tij)>θKij

],

where

dRTi+1

dQTi+1
= eγidw

Ti+1
t +

∑r

l=1

∫

R
xµl(dt,dx)−

1
2
||γi||

2−
∫

R
(ex−1−x)λijν

Ti
ij

(dx)dt,

and
β̄i = α(t, Tij , Ti+1)−

∫

R

xνTiij (dx).

Applying Levy-type Girsanov theorem, the dynamic of Y (τ, Tij) under the
measure RTi+1 is

dY (τ, Tij) = α̃ijdt+ γijdw
RTi+1

+
∫

R

xµR
Ti+1

ij (dx, dt),

where

α̃ij = ᾱij +
1

2
||γij||2 +

∫

R

xexνTiij (dx);

that is the Levy measure is ν
Rij

ij = exνTiij under the measure RTi+1 . Thus one
obtains

DIO(τ, Ti+1;Tij;Kij) = P (τ, Ti+1)L(τ, Ti)e
ᾱiERTi+1

[1θL(Tij ,Tij)>θKij
].

❑
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Theorem 3.5 The time τ value of the DIO is given as follows:

DIO(τ, Ti+1;Tij;Kij)

= P (τ, Ti+1)L(τ, Ti)e
ᾱi
∑∞
a=0

e−λi+1(Ti+1−τ)(λi+1(Ti+1−τ))
a!

N(θe(Tij); a)

with

e(Tij) =
ln
(

L(τ,Tij)

Kij

)

+ η(τ, Ti;Tij ;Ti+1)− 1
2
Va(τ, Tij)

√

Va(τ, Tij)
,

where

η(τ, Ti;Tij;Ti+1) =
∫ Ti

τ
γ(t, Tij) ·

(

σ̄τ (t, T ∗
ij)− σ̄τ (t, Ti+1) + γ(t, Ti)

)

dt (9)

ρ(·, Tij;Ti+1) and Va(t, T ) is defined in (6).

Proof. When the probability density function f(x;µ, σ) is given as a normal
density with mean µ and variance σ2, we have

exf(x;µ, σ) = eµ+
σ2

2 f(x; µ̄, σ),

where µ̄ = µ+σ2. This implies that ν
Rij

ij (dx) = exνTiij (dx) = exfTi(x;µ, σ)dx =

eµ+
σ2

2 f(x; µ̄, σ) when the pdf fTi(x;µ, σ) is a normal density. ❑

Remark 3.6 The characteristic function of Y under the forward measure
RTi+1 is written as

ERTi+1
[eizY ] = etψ

R
Ti+1

(z) ≡ χR
Ti+1

(z),

where

ψ(z) = izα̃ij −
1

2
z2σ̄2

n +
r
∑

l=1

∫

R

(eizx − 1− izx)λlν̄
R
l (dx).

The expected value ERTi+1
[1θL(Tij ,Tij)>θKij

] can also be optioned by the Fourier
transform method (Raible, 2000). The details of the Fourier transform method
is given in Appendix B.

3.4 Delay Interest-or-Nothing Range Digital Option

A delayed interest-or-nothing range digital option (DIRO) pays a floating
interest payment at maturity Ti+1 if the reference interest rate L(Tij , Tij) lies
within a pre-specified range [KL

ij , K
U
ij ]. The final payoff of the DIRO is defined

as follows:

DIRO(Ti+1, Ti+1;Tij;Kij) = L(Tij , Tij)1{KL
ij
≤L(Tij ,Tij)≤KU

ij
}.

12



Similar to DROs, DIROs can also be expressed in terms of two DICs, i.e.

DIRO(Ti+1, Ti+1;Tij;Kij) = DIC(Ti+1, Ti+1;Tij;K
L
ij)−DIC(Ti+1, Ti+1;Tij;K

U
ij ).

Thus, the pricing formula of the DIRO can be expressed in terms of the pricing
formulas of DICs, and the result is presented in the following theorem.

Theorem 3.7 The time τ value of the DIRO is equal to

DIRO(τ, Ti+1;Tij ;Kij) = DIC(τ, Ti+1;Tij;K
L
ij)−DIC(τ, Ti+1;Tij ;K

U
ij ).
(10)

Remark 3.8 If the maturity date Tij of its reference rate equals Ti+1 that is
also the maturity date of the DIO and DIRO, then the DIO and DIRO become,
respectively, an ordinary interest-or-nothing digital option and an ordinary
interest-or-nothing range option without delaying its payoff.

4 Fourier transform method for Delay Digital Options

According to Theorem 3.2 in Raible (2000), the initial price of an option can
be obtained as follows.

Theorem 4.1 Consider the DO with payoff w(L(Tij , Tij)) = 1{θL(Tij ,Tij)>θKij}

at time Ti+1. Let v(x) := w(e−x) denote the modified payoff function. Assume
that x → e−Rx|v(x)| is bounded and integrable for some R ∈ R such that the
moment generating funtion mgf(u) of Y satisfies mgf(−R) < ∞. The value
of the DO at time τ is given as follow:

DO(τ, Ti+1;Tij ;Kij) =
eY (τ,Tij)R

2π
P (t, Ti+1)

∫

R

eiuY (τ,Tij)L[v](R+iu)χ(iR−u)du.

Proof. The DO under the forward measure QTi+1 priced as follows

DO(τ, Ti+1;Tij ;Kij) = P (t, Ti+1)E
QTi+1

(1{θL(Tij ,Tij)>θKij}).

Applying Theorem 1, L(Tij , Tij) under the measure QTi+1 is given by

L(Tij , Tij) = L(τ, Tij)e
Y (Tij ,Tij),

where

dY (t, Tij) = αijdt+ γijdw
Ti+1
t +

r
∑

i=1

∫

R

xµi(dt, dx)

13



with the Levy measure νTii (dx). As θ = 1, the pricing formula of the DC is
defined as follows.

DC(τ, Ti+1;Tij;Kij
)

= P (t, Ti+1)E
QTi+1

[1
e−Y (τ,Tij)+Y (Tij ,Tij )>Kij

]

= P (t, Ti+1)E
QTi+1

[v(Y (τ, Tij)− Y (Tij , Tij))]

= P (t, Ti+1)
∫

R
v(Y (τ, Tij)− y)ρ(y)dy

= eY (τ,Tij )R

2π
P (t, Ti+1)

∫

R
eiuY (τ,Tij)L[DC](R + iu)du

= eY (τ,Tij )R

2π
P (t, Ti+1)

∫

R
eiuY (τ,Tij)L[v](R + iu)χ(iR− u)du.

The bilateral Laplace transform L[ρ] of the density ρ is given by

L[ρ](z) =
∫

R

e−zxρ(x)dx.

Hence, we have the identity L[ρ](z) = χ(iR− u). ❑

Given θ = 1 in the payoff function w(L(Tij, Tij)). For R > 0, the transform of
v(x) can be deduced as

L[v](R + iu) =
Kiu−R
ij

R− iu
.

Hence the pricing formula of the DC is written as

DO(τ, Ti+1;Tij;Kij) =
eY (τ,Tij)R

2π
P (t, Ti+1)

∫

R

eiuY (τ,Tij)
Kiu−R
ij

R− iu
χ(iR − u)du.
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